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Abstract
We postulate a symmetry of universal finite-size scaling functions under a
certain anisotropic scale transformation, which connects the properties of a
finite two-dimensional (2D) system at criticality with generalized aspect ratio
ρ > 1 to a system with ρ < 1. The symmetry is formulated within a finite-
size scaling theory and expressions for several universal amplitude ratios are
derived. The predictions are confirmed within the exactly solvable weakly
anisotropic 2D Ising model and are checked within the strongly anisotropic 2D
dipolar in-plane Ising model using Monte Carlo simulations.

PACS numbers: 05.70.Fh, 75.40.Cx, 05.50.+q

The theory of universal finite-size scaling (UFSS) functions is a key concept in the modern
understanding of continuous phase transitions [1–3]. In particular, it is known that the UFSS
functions of a rectangular two-dimensional (2D) system of size L‖ ×L⊥ depend on the aspect
ratio L‖/L⊥ [4]. For instance, in isotropic systems, the scaling function at criticality Ūc of
the Binder cumulant U = 1 − 1

3 〈m4〉/〈m2〉2 [5], where 〈mn〉 is the nth moment of the order
parameter, is known to be a universal function Ūc(L‖/L⊥) for a given boundary condition.
This quantity has been investigated by several authors in the isotropic 2D Ising model with
periodic boundary conditions [6, 7], while the influence of other boundary conditions on
Ūc(L‖/L⊥) has recently been studied in [8, 9].

In weakly anisotropic systems, where the couplings are anisotropic (J‖ �= J⊥ in the
2D Ising case), the correlation length of the infinite system in direction µ = ‖,⊥ becomes
anisotropic and scales like ξ (∞)

µ (t) ∼ ξ̂ µt−ν near criticality. (t = (T − Tc)/Tc is the reduced
temperature and we assume t > 0, without loss of generality.) This leads to a correlation
length amplitude ratio ξ̂ ‖/ξ̂⊥ different from unity. The UFSS functions then depend on this
ratio, i.e. Ūc = Ūc(L‖/L⊥, ξ̂ ‖/ξ̂⊥). However, isotropy can be restored asymptotically by
an anisotropic scale transformation, where all lengths are rescaled with the corresponding
correlation length amplitudes ξ̂ µ [10–12]. Thus, the UFSS functions depend on L‖/L⊥ and
ξ̂‖/ξ̂⊥ only through the reduced aspect ratio (L‖/ξ̂ ‖)/(L⊥/ξ̂⊥).
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Figure 1. Three systems with different aspect ratio ρ (equation (2)) at criticality. In (a), the critical
correlation volume ξ‖,cξ⊥,c (shaded area) spans the whole system, while in (b) and (c), correlations
are limited by symmetric finite-size effects.

In strongly anisotropic systems, both the amplitudes ξ̂ µ as well as the correlation length
exponents νµ are different and the correlation length in direction µ scales like

ξ (∞)
µ (t) ∼ ξ̂ µt−νµ . (1)

Examples for strongly anisotropic phase transitions are Lifshitz points [13] as present in the
anisotropic next nearest neighbour Ising (ANNNI) model [14–16], or the non-equilibrium
phase transition in the driven lattice gas model [17, 18]. Furthermore, in dynamical systems
one can identify the ‖-direction with time and the ⊥-direction(s) with space [19], which in
most cases give strongly anisotropic behaviour.

Using the same arguments as above, we conclude that UFSS functions of strongly
anisotropic systems depend on the generalized reduced aspect ratio (cf [6])

ρ = L‖L−θ
⊥

/
rξ with rξ = ξ̂‖ξ̂−θ

⊥ (2)

being the generalized correlation length amplitude ratio, and with the anisotropy exponent
θ = ν‖/ν⊥ [19]. Up to now, no attempts have been made to describe the dependence of UFSS
functions such as Ūc(ρ) on the shape ρ of strongly anisotropic systems. In particular, it is not
known if the anisotropy exponent θ can be determined from Ūc(ρ). This problem is addressed
in this work.

Consider a 2D strongly anisotropic finite system with periodic boundary conditions.
When the critical point of the infinite system is approached from temperatures t > 0, the
correlation lengths ξµ in the different directions µ are limited by the direction in which ξ (∞)

µ

from equation (1) reaches the system boundary first [4]. For a given volume N = L‖L⊥, we
define an ‘optimal’ shape L

opt
‖ × L

opt
⊥ at which both correlation lengths ξ (∞)

µ reach the system
boundary simultaneously, i.e.

Lopt
µ := ξ (∞)

µ (t) (3)

for some temperature t > 0 (figure 1(a)). We immediately find, using equations (1) and (2),
that the optimal shape obeys ρopt ≡ 1 for all N, giving L

opt
‖ = rξ (L

opt
⊥ )θ . A system of optimal

shape should show the strongest critical fluctuations for a given volume N as the critical
correlation volume ξ‖,cξ⊥,c spans the whole system.
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At the optimal aspect ratio ρ = 1, the correlations are limited by both directions ‖ and
⊥ (figure 1(a)). If the system is enlarged by a factor b > 1 in the ‖-direction (figure 1(b)),
the correlation volume may relax into this direction but does not fill the whole system due
to the limitation in the ⊥-direction. A similar situation with exchanged roles occurs if the
system is enlarged by a factor b > 1 in the ⊥-direction (figure 1(c)). We now assume that
systems (b) and (c) are similar in the scaling region L

opt
µ → ∞, i.e. their correlation volumes

are asymptotically equal.
Hence, we can formulate a symmetry hypothesis: Consider a system with periodic

boundary conditions and optimal aspect ratio ρ = 1 at the critical point. If this system
is enlarged by a factor b > 1 in the ‖-direction, it behaves asymptotically the same as if
enlarged by the same factor b in the ⊥-direction.

To formulate this hypothesis within a finite-size scaling theory, we consider a 2D strongly
anisotropic system of size L‖ × L⊥ which fulfils the generalized hyperscaling relation
2 − α = ν‖ + ν⊥ [6]. For our purpose, it is sufficient to focus on the critical point. The
universal finite-size scaling ansatz [1–4, 6] for the singular part of the free energy density
fc = Fs,c/(NkBTc) reads [20]

fc(L‖, L⊥) ∼ b‖b⊥
N

Yc(b‖, b⊥) (4)

with the scaling variables bµ = λνµLµ/ξ̂µ, where λ is a free-scaling parameter. The scaling
function Yc is universal for a given boundary condition, and all non-universal properties are
contained in the metric factors ξ̂ µ. These metric factors occur due to the usual requirement that
the relevant lengths are Lµ/ξ(∞)

µ (t) near criticality and cannot be absorbed into λ in contrast

to isotropic systems. For the three systems in figure 1, we set λ = (
L

opt
µ

/
ξ̂ µ

)−1/νµ to get

fc

(
L

opt
‖ , L

opt
⊥

)
∼ 1

N
Yc(1, 1) (5a)

fc

(
bL

opt
‖ , L

opt
⊥

)
∼ b

N
Yc(b, 1) (5b)

fc

(
L

opt
‖ , bL

opt
⊥

)
∼ b

N
Yc(1, b). (5c)

The proposed symmetry hypothesis states that for b > 1, equations (5b) and (5c) are
asymptotically equal in the scaling region where L

opt
µ is large,

fc

(
bL

opt
‖ , L

opt
⊥

)
b>1∼ fc

(
L

opt
‖ , bL

opt
⊥

)
. (6)

Hence, the scaling function Yc has the simple symmetry

Yc(b, 1)
b>1= Yc(1, b). (7)

To rewrite Yc as a function of the generalized aspect ratio ρ (equation (2)), instead of the
quantities bµ, we set b⊥ = 1 in system (c) and get, as then λ = (

bL
opt
⊥ /ξ̂⊥

)−1/ν⊥ ,

fc

(
L

opt
‖ , bL

opt
⊥

)
∼ b−θ

N
Yc(b

−θ , 1). (8)

Equations (5c) and (8) are identical and we conclude that bYc(1, b) = b−θYc(b
−θ , 1). At this

point, it is convenient to define the scaling function Ȳc(b) = bYc(b, 1) which fulfils

fc(L‖, L⊥) ∼ 1

N
Ȳc(ρ). (9)
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For this scaling function, the symmetry reads

Ȳc(ρ)
ρ>1= Ȳc(ρ

−θ ). (10)

We see from equation (9) that the critical free energy density fc is a universal function of the
reduced aspect ratio ρ = L‖L−θ

⊥
/
rξ without any non-universal prefactor, and that at criticality,

all system specific properties are contained in the non-universal ratio rξ from equation (2).
Ansatz equation (4) can also be made for the inverse spin–spin correlation length at

criticality [20]

ξ−1
µ,c(L‖, L⊥) ∼ bµ

Lµ

Xµ,c(b‖, b⊥). (11)

The proposed symmetry gives Xµ,c(b, 1)
b>1= Xµ̄,c(1, b), where µ̄ denotes the direction

perpendicular to µ. Hence, the correlation volumes ξ‖,cξ⊥,c of systems (b) and (c) in figure 1
are indeed equal as assumed above and become ξ‖,cξ⊥,c ∼ N

b
X−1

‖,c(b, 1)X−1
⊥,c(b, 1).

The correlation length amplitudes A
µ
ξ in cylindrical geometry (bµ → ∞, bµ̄ = 1), which

can be calculated exactly for many isotropic two-dimensional models within the theory of
conformal invariance [21], generalize to the strongly anisotropic form [3]

A
µ

ξ = lim
Lµ̄→∞

L
−νµ/νµ̄

µ̄ lim
Lµ→∞

ξµ,c(L‖, L⊥). (12)

Inserting equation (11), they become

A
‖
ξ = rξX

−1
‖,c(∞, 1) A⊥

ξ = r
−1/θ

ξ X−1
⊥,c(1,∞) (13)

which shows that in general A
µ

ξ is not universal. The symmetry hypothesis states that
both limits of the scaling function Xµ,c are equal. Denoting this universal limit by
Aξ := X−1

‖,c(∞, 1) = X−1
⊥,c(1,∞), we obtain A

‖
ξ = rξAξ and A⊥

ξ = r
−1/θ

ξ Aξ as well as the
amplitude relations

A1+θ
ξ = A

‖
ξ

(
A⊥

ξ

)θ A
‖
ξ

A⊥
ξ

= r
1+1/θ

ξ . (14)

These predictions can be checked within the exactly solved weakly anisotropic 2D Ising
model with different couplings J‖ and J⊥, where the paramagnetic correlation length reads
ξ (∞)
µ (t) = (log coth(βJµ) − 2βJµ̄)−1 with β = 1/kBT [22]. The amplitude ratio rξ at the

critical point sinh(2βcJ‖) sinh(2βcJ⊥) = 1 [22] becomes rξ = sinh(2βcJ‖) [23]. On the
other hand, the inverse correlation length amplitudes in cylinder geometry, equation (12),
have been calculated [24] to give A

µ
ξ = 4

π
sinh(2βcJµ), which immediately yields

equations (13) if we insert the well-known universal value Aξ = 4/π [21, 25]. The left
relation of equations (14) has already been derived for several weakly anisotropic models,
where it simplifies to A2

ξ = A
‖
ξA

⊥
ξ [24, equation (7)].

To check the symmetry numerically in strongly anisotropic systems, we now focus on the
Binder cumulant U. The scaling ansatz at criticality equation (4) becomes

Uc(L‖, L⊥) ∼ 1

b‖b⊥
Ũc(b‖, b⊥) = Ūc(ρ) (15)

with the scaling function Ūc(b) = Ũc(b, 1)/b, and the calculation is completely analogous to
the free-energy case. The symmetry hypothesis for the cumulant scaling functions Ũc and Ūc

thus reads (cf equations (7) and (10))

Ũ c(b, 1)
b>1= Ũ c(1, b) Ū c(ρ)

ρ>1= Ū c(ρ
−θ ). (16)
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Figure 2. Sketch of critical cumulant scaling functions Ū c(ρ) and Ū c(ρ
′) with ρ′ = ρ−θ for

assumed anisotropy exponent θ = 2. We have Ū c(ρ � 1) ∼ AU/ρ and Ū c(ρ � 1) ∼ AU ρ1/θ .
For ρ > 1 Ū c(ρ) fulfils Ū c(ρ) = Ū c(ρ

′).

The generalization of the cumulant amplitude A
µ

U [5, 26] to strongly anisotropic systems is
similar to equation (12) and gives

A
µ

U = lim
Lµ̄→∞

L
−νµ/νµ̄

µ̄ lim
Lµ→∞

LµUc(L‖, L⊥). (17)

Inserting the scaling ansatz equation (15) we now find

A
‖
U = rξ Ũ c(∞, 1) A⊥

U = r
−1/θ

ξ Ũ c(1,∞) (18)

which again are, in general, not universal. Using the symmetry hypothesis, we can define
AU := Ũ c(∞, 1) = Ũ c(1,∞) and get A

‖
U = rξAU , A⊥

U = r
−1/θ

ξ AU as well as the identities
(cf equations (14))

A1+θ
U = A

‖
U

(
A⊥

U

)θ A
‖
U

A⊥
U

= r
1+1/θ

ξ . (19)

The cumulant scaling function Ū c(ρ) must be extremal at ρ = 1 due to symmetry.
Furthermore, as a deviation from the optimal aspect ratio ρ = 1 reduces the cumulant, it has
a maximum at this point [6]. A sketch of Ū c(ρ) for an assumed anisotropy exponent θ = 2 is
depicted in figure 2. For ρ > 1, both Ū c(ρ) and Ū c(ρ

′ = ρ−θ ) collapse onto a single curve,
reflecting the proposed symmetry. It is obvious from figure 2 that Ū c(ρ) (and thus, also Ȳc(ρ)

from equation (10)) cannot be analytic at ρ = 1 in strongly anisotropic systems, as the two
branches Ū c(ρ) and Ū c(ρ

′) identical for ρ > 1 fork at ρ = 1 [20]. On the other hand, Ȳc(ρ)

and Ū c(ρ) can be analytic at ρ = 1 if the anisotropy exponent θ = 1, as in the case of the
isotropic 2D Ising model [27, equation (3.37)].

To check the symmetry hypothesis in a strongly anisotropic system, I performed Monte
Carlo simulations of the two-dimensional dipolar in-plane Ising model [20]

H = −J

2

∑
〈ij〉

σiσj +
ω

2

∑
i �=j

(
r⊥
ij

)2
− 2

(
r

‖
ij

)2

|rij |5 σiσj (20)
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Figure 3. Cumulant Uc(L‖, L⊥) of the dipolar in-plane Ising model (equation (20)) for dipole
strength ω/J = 0.1 and system size N = 43 200 at the critical point kBTc/J = 2.764(1). The data
points collapse for ρ > 1 if we set θ = 2.1(3) and rξ = 0.415(40), giving the universal amplitudes
Ū c(1) = 0.555(5) and AU = 3.5(2). The inset shows Uc as a function of the non-reduced
generalized aspect ratio L‖L−θ

⊥ for system size N = 43 200 (circles) and N = 4320 (triangles).

with spin variables σ = ±1, ferromagnetic nearest neighbour exchange interaction J > 0 and
dipole interaction ω > 0. The distance rij = (

r
‖
ij , r

⊥
ij

)
between spins σi and σj is decomposed

into contributions parallel and perpendicular to the spin axis. In the simulations, the Wolff
cluster algorithm [28] for long-range systems proposed by Luijten and Blöte [29] was used,
modified to anisotropic interactions. In contrast to earlier work [30, 31] using renormalization
group techniques, it is found that this model shows a strongly anisotropic phase transition.
The details of the simulations will be published elsewhere [20].

After Tc was determined, systems with constant volume N = L‖L⊥ were simulated, which
was chosen to have a large number of divisors in order to get many different aspect ratios (e.g.,
N = 263352 = 43 200 has 84 divisors). The resulting critical cumulant Uc(L‖L−θ

⊥ ) for two
different volumes N = 4320, 43 200 is depicted in the inset of figure 3. As expected, both
curves have the same maximum value Ū c(1) = 0.555(5) at criticality. With variation of θ , the
curves are shifted horizontally and collapse for θ = 2.1(3), with maximum at rξ = 0.415(40).
To check the proposed symmetry, we fold the left branch with ρ < 1 (open symbols) to the
right and rescale the ρ-axis with θ . The resulting data collapse for ρ > 1 is shown in figure 3.
This collapse and the additional condition that both curves must go to zero as AU/ρ allows a
precise determination of θ and rξ as well as of the universal amplitude AU = 3.5(2).

In conclusion, I postulate a symmetry of universal finite-size scaling functions under a
certain anisotropic scale transformation and generalize the Privman–Fisher equations [1] to
strongly anisotropic phase transitions on rectangular lattices at criticality. It turns out that
for a given boundary condition, the only relevant variable is the generalized reduced aspect
ratio ρ = L‖Lθ

⊥/rξ and that, e.g., the free energy scaling function equation (9) obeys the

symmetry Ȳc(ρ)
ρ>1= Ȳc(ρ

−θ ). At criticality, the free energy density fc, the inverse correlation
lengths ξµ,c and the Binder cumulant Uc are universal functions of ρ, without a non-universal
prefactor. All system specific properties are contained in the non-universal correlation length
amplitude ratio rξ (equation (2)).
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The generalization to higher dimensions is straightforward [20], an interesting application
would be the precise determination of the exponent θ at the Lifshitz point of the three-
dimensional ANNNI model [15, 16]. An open question is the validity of the proposed
symmetry in non-equilibrium systems with appropriate boundary conditions, which have
recently been shown to exhibit Privman–Fisher universality [3].
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I thank Sven Lübeck and Erik Luijten for valuable discussions and Malte Henkel for a critical
reading of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft
through SFB 491.

References

[1] Privman V and Fisher M E 1994 Phys. Rev. B 30 322
[2] Privman V 1990 Finite Size Scaling and Numerical Simulation of Statistical Systems ed V Privman (Singapore:

World Scientific) ch 1
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